Temporal and kinematic features of size constancy during perception and action

Irene Sperandio ${ }^{1}$, Simona Noviello ${ }^{1}$, Saman Kamari Songhorabadi ${ }^{1}$, Juan Chen ${ }^{2}$, Louis Renoult ${ }^{3}$

1. University of Trento (Rovereto, Italy), Department of Psychology and Cognitive Science.
2. School of Psychology, South China Normal University, Guangzhou, Guangdong Province, China.
3. University of East Anglia (Norwich, UK), Department of Clinical Psychology and Psychological Therapies, Norwich Medical School.

Host institution: University of Trento (Italy)

Introduction

Size constancy is critical for our perceptual experience and successful interactions with the physical and social world

Aim: Examine the electrophysiological correlates of size constancy during perception and action

Methods

Exp. 1: Real-world distance Exp. 2: Illusory distance

Design: 2×2 within-subject design Task: Manual Estimation vs Grasping Size: Small stimulus vs Big stimulus

Results

Posterior cluster

We found earlier latencies and greater amplitudes in response to perceptually bigger than smaller objects of matched retinal size,

F 0 UNDATI 0 N
regardless of the task.

Central cluster

We found task-related differences at later stages of processing: the mean amplitude of the P2 component was greater for manual estimation than grasping.

Conclusions

- Size constancy for real objects takes place at the earliest cortical stages; - Early visual processing does not change as a function of task demands.

