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predictive processing

• perceptual content is conveyed  
by top-down predictions


• bottom-up ‘sensory’ signals 
convey prediction errors



E
dw

ar
d 

H
. A

de
ls

on
 (1

99
5)



Pinto et al (2015) Journal of Vision

We also tested whether image familiarity (as defined
by manipulation of presentation frequency, described
above) and jitter affected response times. Both manip-
ulations turned out not to have any effect in this
experiment or in the second experiment; jitter: two-way
ANOVA, within-subject factor expectation (expected,
neutral, and unexpected) and between-subject factor of
jitter (jitter or no jitter): no interaction between
expectation and jitter: F(2, 72)¼ 0.82, p¼ 0.45, g2 ¼
0.02; Experiment 2: F(2, 62)¼ 0.18, p¼ 0.84, g2¼ 0.006;
familiarity: one-way ANOVA, within-subject factor
frequency (often, neutral, or rare): F(2, 72)¼ 0.79, p¼
0.46, g2¼ 0.02; Experiment 2: F(2, 62)¼ 0.28, p¼ 0.76,
g2¼ 0.008. Therefore, in the analyses of Experiments 1
and 2, we collapsed the results across jitter and
familiarity conditions.

Results

Amain effect of expectation was observed, F(2, 72)¼
3.87, p¼ 0.03, g2¼ 0.097. Next we investigated whether
there was an expectation benefit, which we defined as
difference between response times to expected stimuli
and response times to unexpected stimuli. Post hoc
planned t tests (two tailed) revealed that participants
responded to expected stimuli faster than to unexpected
stimuli, t(36)¼ 2.53, p ¼ 0.02, Cohen’s d ¼ 0.84,
demonstrating an expectation benefit. Furthermore
participants tended to respond to expected stimuli
faster than to neutral stimuli, t(36) ¼ 1.93, p¼ 0.06,
Cohen’s d¼ 0.64 (see Figure 2, left panel). Finally, we
investigated rates of false alarms and misses after either
a predictive or a neutral cue. This revealed no
significant differences in either misses or false alarms
[misses, predictive: 1.7%, neutral: 1.4%, t(36)¼1.04, p¼

0.31, Cohen’s d ¼ 0.34; false alarms, predictive: 3.8%,
neutral: 2.9%, t(36)¼ 0.71, p¼ 0.48, Cohen’s d¼ 0.24].

These results indicate that valid expectations accel-
erated conscious detection of target stimuli. However,
they do not indicate whether conscious identification is
affected by expectations (detection and identification
are known to involve distinct mechanisms; see Pinto,
Scholte, & Lamme, 2012). Specifically, the data so far
did not establish whether acceleration of conscious
access could occur when identification of the target
image (rather than detection of any image) is required.
We therefore performed Experiment 2 to test whether
expectations can accelerate the formation of content-
specific conscious percepts, (i.e., those requiring iden-
tification as well as detection).

Experiment 2: Valid expectations
accelerate conscious identification

In Experiment 1, subjects indicated when they saw
any image break through masking (detection). In
Experiment 2 subjects had to additionally identify the
image before responding. Specifically, they were
instructed to make one response whenever a house or a
face became visible, and to make a different response
when any other image became visible. The cues in
Experiment 2 were identical to the cues in Experiment
1. So the word ‘‘face’’ predicted a face image would
appear, the word ‘‘house’’ that a house image would
appear, and the word ‘‘neutral’’ was unpredictive.
Importantly, the cue predicted whether a house or a
face would appear, but the response to a house and a
face was the same, making it less likely that any effect
on reaction time would be due to response priming.

Methods

Experiment 2 was the same as Experiment 1, except
for the following changes.

Participants

Thirty-six participants (24 female, age range: 18–34
years, average 22.03 years) participated in Experiment 2.

Procedure

The ratio of which cues preceded which images were
identical to Experiment 1; however, catch trials were
different in Experiment 2 than in Experiment 1: Trials
on which no image appeared were replaced by trials
where another image than a face or a house appeared
(either an animal or an object; the stimuli again came

Figure 2. Breakthrough times for expected (green), neutral
(blue), and unexpected (red) stimuli in Experiments 1 and 2.
Asterisks indicate significant differences between conditions. In
both experiments expected stimuli broke through more quickly
than neutral and unexpected stimuli. Note that if subjects
participated in both experiments (which all but one did), they
performed Experiment 1 first. This practice effect was the likely
cause of the lower response times in Experiment 2. Error bars
indicate between-subjects standard error.
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raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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time perception

• proposal: subjective duration is based on accumulated salient 
perceptual change across multiple levels of processing


• not merely changes in low-level stimulus properties
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Only the pixels of the video inside this spotlight were used as
input to the model (see Supplementary Movie 2).
As time estimates generated by the model were made on the

same videos as the reports made by humans, human and model
estimates could be compared directly. Figure 3a shows duration
estimates produced by human participants and the model under
the different input scenarios. Participants’ reports demonstrated
qualities typically found for human estimates of time: over-
estimation of short durations and underestimation of long
durations (regression of responses to the mean/Vierordt’s law),
and variance of reports proportional to the reported duration
(scalar variability/Weber’s law). Model estimates produced when

the full video frame was input (Fig. 3b; Full-frame model)
revealed qualitative properties similar to human reports—though
the degree of over- and underestimation was exaggerated, the
variance of estimates were generally proportional to the estimated
duration (see Supplementary Figs. 8 and 9 and Supplementary
Discussion: Estimate variance by duration, for detailed explora-
tion of human and model estimate variance). These results
demonstrate that the basic method of our model—accumulation
of salient changes in activation of a perceptual classification
network—can produce meaningful estimates of time. Specifically,
the slope of estimation is non-zero with short durations
discriminated from long, and the estimates replicate some of
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Fig. 2 Simplified depiction of the time estimation model. Salient changes in network activation driven by video input are accumulated and transformed into
standard units for comparison with human reports. The bottom left shows two consecutive frames of video input. The connected coloured nodes depict
network structure and activation patterns in each layer in the classification network for the inputs. L2 gives the Euclidean distance between network
activations to successive inputs for a given network layer (layers conv2, pool5, fc7, output). Neurons across the hierarchical layers of the classification
network are differentially responsive to feature complexity in images, with higher layers more responsive to object-like archetypes and lower layers to
primitive features like edges or contours (e.g. see Fig. 4 in ref. 41). In the Change Detection stage, the value of L2 for a given network layer is compared to a
dynamic threshold (red line). When L2 exceeds the threshold level, a salient perceptual change is determined to have occurred, a unit of subjective time is
determined to have passed and is accumulated to form the base estimate of time. Support vector regression is applied to convert this abstract time
estimate into standard units (in s) for comparison with human reports
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Fig. 1 Experimental apparatus and procedure. a Human participants observed videos of natural scenes and reported the apparent duration while we tracked
their gaze direction. b Depiction of the high-level architecture of the model used for simulations (see also Fig. 2 below). c Frames from a video used as a
stimulus for human participants and input for simulated experiments. Human participants provided reports of the duration of a video in seconds using a
visual analogue scale. d Videos used as stimuli for the human experiment and input for the model experiments included scenes recorded walking around a
city (top left), in an office (top right), in a cafe (bottom left), walking in the countryside (bottom right) and walking around a leafy campus (centre)
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human experiment

• videos of (objective duration) 
1-64 sec


• 4290 trials ~= 55 hours of data

• each participant completed up 

to 1 hour of trials 

• eye tracking also measured



human experiment

the qualitative aspects of human reports often associated with
time perception. However, the overall performance of the system
under these conditions still departed from that of human
participants (Fig. 3e, f) (see Supplementary Figs. 6 and 7 and
Supplementary Discussion: Changes in classification network
activation, not just stimulation, are critical to human-like time
estimation, for results of experiments conducted on pixel-wise
differences in the raw video alone. These data show that tracking
changes in classification network activation allows human-like
time estimation, while estimation based on tracking changes in
the stimulus properties alone does not).

Human-like gaze improves model performance. When the
video input to the system was constrained to approximate human
visual-spatial attention by taking into account gaze position
(“Gaze” model; Fig. 3c), model-produced estimates more closely
approximated reports made by human participants (Fig. 3c, e, f),
with substantially improved estimation as compared to estimates

based on the full frame input. This result was not simply due to
the spatial reduction of input caused by the gaze-contingent
spatial filtering, nor the movement of the input frame itself, as
when the gaze-contingent filtering was applied to videos other
than the one from which gaze was recorded (i.e. gaze recorded
while viewing one video then applied to a different video;
“Shuffled” model), model estimates were poorer (Fig. 3d). These
results indicate that the contents of where humans look in a scene
play a key role in time perception and indicate that our approach
is capturing key features of human time perception, as model
performance is improved when input is constrained to be more
human-like.

Model and human time estimation vary by content. As
described in the introduction, human estimates of duration are
known to vary by content (e.g. refs. 17,24–27). In our test videos,
three different types of scenes could be broadly identified: scenes
filmed moving around a city, moving around a leafy university
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Fig. 3 Human and model duration estimation and its modulation by scene type. a Human duration estimates by duration of presented video between 1 and
64 s (log-log scale). b–d as for a but for model versions Full frame, “Gaze” and “Shuffled”. The data in each plot a–d are based on the same set of 4251
video presentations, reported on by human participants a or estimated by different model versions b–d. Shaded areas in a–d show ±1 standard deviation of
the mean. Human reports in a show typical qualities of human temporal estimation with overestimation of short and underestimation of long durations.
bModel estimates when input the full video frame replicate similar qualitative properties, but estimation was poorer than humans. cModel estimates when
the input was constrained to approximate human visual-spatial attention, based on human gaze data, very closely approximated human reports made on
the same videos. When the gaze contingency was “Shuffled” such that the gaze direction was applied to a different video than that from which it was
obtained d, performance decreased. e Comparison of normalised mean error (NME) in estimations for models and human estimates (normalised by
physical duration, across the presented durations). f Comparison of the root mean squared error (RMSE) of model estimates compared to the human data.
The “Gaze” model is most closely matched (Full frame: 11.99, “Gaze”: 10.71, “Shuffled”: 11.79). g Mean deviation of duration estimates relative to mean
estimate by scene type for human participants (mean shown in a; City: 6.20 mean (1040 trials), Campus & outside: 2.01 mean (1170 trials), Office & cafe:
−4.23 (2080 trials); Total number of trials 4290). h As for g but for the “Gaze” model (mean shown in c; City: 24.41 mean (1035 trials), Campus &
outside: −5.75 mean (1167 trials), Office & cafe: −9.00 (2068 trials); Total number of trials 4270). i. The number of accumulated salient perceptual
changes over time in the different network layers (lowest to highest: conv2, pool5, fc7, output) by scene type, for the “Gaze” model shown in h
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the qualitative aspects of human reports often associated with
time perception. However, the overall performance of the system
under these conditions still departed from that of human
participants (Fig. 3e, f) (see Supplementary Figs. 6 and 7 and
Supplementary Discussion: Changes in classification network
activation, not just stimulation, are critical to human-like time
estimation, for results of experiments conducted on pixel-wise
differences in the raw video alone. These data show that tracking
changes in classification network activation allows human-like
time estimation, while estimation based on tracking changes in
the stimulus properties alone does not).

Human-like gaze improves model performance. When the
video input to the system was constrained to approximate human
visual-spatial attention by taking into account gaze position
(“Gaze” model; Fig. 3c), model-produced estimates more closely
approximated reports made by human participants (Fig. 3c, e, f),
with substantially improved estimation as compared to estimates

based on the full frame input. This result was not simply due to
the spatial reduction of input caused by the gaze-contingent
spatial filtering, nor the movement of the input frame itself, as
when the gaze-contingent filtering was applied to videos other
than the one from which gaze was recorded (i.e. gaze recorded
while viewing one video then applied to a different video;
“Shuffled” model), model estimates were poorer (Fig. 3d). These
results indicate that the contents of where humans look in a scene
play a key role in time perception and indicate that our approach
is capturing key features of human time perception, as model
performance is improved when input is constrained to be more
human-like.

Model and human time estimation vary by content. As
described in the introduction, human estimates of duration are
known to vary by content (e.g. refs. 17,24–27). In our test videos,
three different types of scenes could be broadly identified: scenes
filmed moving around a city, moving around a leafy university
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Fig. 3 Human and model duration estimation and its modulation by scene type. a Human duration estimates by duration of presented video between 1 and
64 s (log-log scale). b–d as for a but for model versions Full frame, “Gaze” and “Shuffled”. The data in each plot a–d are based on the same set of 4251
video presentations, reported on by human participants a or estimated by different model versions b–d. Shaded areas in a–d show ±1 standard deviation of
the mean. Human reports in a show typical qualities of human temporal estimation with overestimation of short and underestimation of long durations.
bModel estimates when input the full video frame replicate similar qualitative properties, but estimation was poorer than humans. cModel estimates when
the input was constrained to approximate human visual-spatial attention, based on human gaze data, very closely approximated human reports made on
the same videos. When the gaze contingency was “Shuffled” such that the gaze direction was applied to a different video than that from which it was
obtained d, performance decreased. e Comparison of normalised mean error (NME) in estimations for models and human estimates (normalised by
physical duration, across the presented durations). f Comparison of the root mean squared error (RMSE) of model estimates compared to the human data.
The “Gaze” model is most closely matched (Full frame: 11.99, “Gaze”: 10.71, “Shuffled”: 11.79). g Mean deviation of duration estimates relative to mean
estimate by scene type for human participants (mean shown in a; City: 6.20 mean (1040 trials), Campus & outside: 2.01 mean (1170 trials), Office & cafe:
−4.23 (2080 trials); Total number of trials 4290). h As for g but for the “Gaze” model (mean shown in c; City: 24.41 mean (1035 trials), Campus &
outside: −5.75 mean (1167 trials), Office & cafe: −9.00 (2068 trials); Total number of trials 4270). i. The number of accumulated salient perceptual
changes over time in the different network layers (lowest to highest: conv2, pool5, fc7, output) by scene type, for the “Gaze” model shown in h
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the qualitative aspects of human reports often associated with
time perception. However, the overall performance of the system
under these conditions still departed from that of human
participants (Fig. 3e, f) (see Supplementary Figs. 6 and 7 and
Supplementary Discussion: Changes in classification network
activation, not just stimulation, are critical to human-like time
estimation, for results of experiments conducted on pixel-wise
differences in the raw video alone. These data show that tracking
changes in classification network activation allows human-like
time estimation, while estimation based on tracking changes in
the stimulus properties alone does not).

Human-like gaze improves model performance. When the
video input to the system was constrained to approximate human
visual-spatial attention by taking into account gaze position
(“Gaze” model; Fig. 3c), model-produced estimates more closely
approximated reports made by human participants (Fig. 3c, e, f),
with substantially improved estimation as compared to estimates

based on the full frame input. This result was not simply due to
the spatial reduction of input caused by the gaze-contingent
spatial filtering, nor the movement of the input frame itself, as
when the gaze-contingent filtering was applied to videos other
than the one from which gaze was recorded (i.e. gaze recorded
while viewing one video then applied to a different video;
“Shuffled” model), model estimates were poorer (Fig. 3d). These
results indicate that the contents of where humans look in a scene
play a key role in time perception and indicate that our approach
is capturing key features of human time perception, as model
performance is improved when input is constrained to be more
human-like.

Model and human time estimation vary by content. As
described in the introduction, human estimates of duration are
known to vary by content (e.g. refs. 17,24–27). In our test videos,
three different types of scenes could be broadly identified: scenes
filmed moving around a city, moving around a leafy university
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Fig. 3 Human and model duration estimation and its modulation by scene type. a Human duration estimates by duration of presented video between 1 and
64 s (log-log scale). b–d as for a but for model versions Full frame, “Gaze” and “Shuffled”. The data in each plot a–d are based on the same set of 4251
video presentations, reported on by human participants a or estimated by different model versions b–d. Shaded areas in a–d show ±1 standard deviation of
the mean. Human reports in a show typical qualities of human temporal estimation with overestimation of short and underestimation of long durations.
bModel estimates when input the full video frame replicate similar qualitative properties, but estimation was poorer than humans. cModel estimates when
the input was constrained to approximate human visual-spatial attention, based on human gaze data, very closely approximated human reports made on
the same videos. When the gaze contingency was “Shuffled” such that the gaze direction was applied to a different video than that from which it was
obtained d, performance decreased. e Comparison of normalised mean error (NME) in estimations for models and human estimates (normalised by
physical duration, across the presented durations). f Comparison of the root mean squared error (RMSE) of model estimates compared to the human data.
The “Gaze” model is most closely matched (Full frame: 11.99, “Gaze”: 10.71, “Shuffled”: 11.79). g Mean deviation of duration estimates relative to mean
estimate by scene type for human participants (mean shown in a; City: 6.20 mean (1040 trials), Campus & outside: 2.01 mean (1170 trials), Office & cafe:
−4.23 (2080 trials); Total number of trials 4290). h As for g but for the “Gaze” model (mean shown in c; City: 24.41 mean (1035 trials), Campus &
outside: −5.75 mean (1167 trials), Office & cafe: −9.00 (2068 trials); Total number of trials 4270). i. The number of accumulated salient perceptual
changes over time in the different network layers (lowest to highest: conv2, pool5, fc7, output) by scene type, for the “Gaze” model shown in h
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the qualitative aspects of human reports often associated with
time perception. However, the overall performance of the system
under these conditions still departed from that of human
participants (Fig. 3e, f) (see Supplementary Figs. 6 and 7 and
Supplementary Discussion: Changes in classification network
activation, not just stimulation, are critical to human-like time
estimation, for results of experiments conducted on pixel-wise
differences in the raw video alone. These data show that tracking
changes in classification network activation allows human-like
time estimation, while estimation based on tracking changes in
the stimulus properties alone does not).

Human-like gaze improves model performance. When the
video input to the system was constrained to approximate human
visual-spatial attention by taking into account gaze position
(“Gaze” model; Fig. 3c), model-produced estimates more closely
approximated reports made by human participants (Fig. 3c, e, f),
with substantially improved estimation as compared to estimates

based on the full frame input. This result was not simply due to
the spatial reduction of input caused by the gaze-contingent
spatial filtering, nor the movement of the input frame itself, as
when the gaze-contingent filtering was applied to videos other
than the one from which gaze was recorded (i.e. gaze recorded
while viewing one video then applied to a different video;
“Shuffled” model), model estimates were poorer (Fig. 3d). These
results indicate that the contents of where humans look in a scene
play a key role in time perception and indicate that our approach
is capturing key features of human time perception, as model
performance is improved when input is constrained to be more
human-like.

Model and human time estimation vary by content. As
described in the introduction, human estimates of duration are
known to vary by content (e.g. refs. 17,24–27). In our test videos,
three different types of scenes could be broadly identified: scenes
filmed moving around a city, moving around a leafy university
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Fig. 3 Human and model duration estimation and its modulation by scene type. a Human duration estimates by duration of presented video between 1 and
64 s (log-log scale). b–d as for a but for model versions Full frame, “Gaze” and “Shuffled”. The data in each plot a–d are based on the same set of 4251
video presentations, reported on by human participants a or estimated by different model versions b–d. Shaded areas in a–d show ±1 standard deviation of
the mean. Human reports in a show typical qualities of human temporal estimation with overestimation of short and underestimation of long durations.
bModel estimates when input the full video frame replicate similar qualitative properties, but estimation was poorer than humans. cModel estimates when
the input was constrained to approximate human visual-spatial attention, based on human gaze data, very closely approximated human reports made on
the same videos. When the gaze contingency was “Shuffled” such that the gaze direction was applied to a different video than that from which it was
obtained d, performance decreased. e Comparison of normalised mean error (NME) in estimations for models and human estimates (normalised by
physical duration, across the presented durations). f Comparison of the root mean squared error (RMSE) of model estimates compared to the human data.
The “Gaze” model is most closely matched (Full frame: 11.99, “Gaze”: 10.71, “Shuffled”: 11.79). g Mean deviation of duration estimates relative to mean
estimate by scene type for human participants (mean shown in a; City: 6.20 mean (1040 trials), Campus & outside: 2.01 mean (1170 trials), Office & cafe:
−4.23 (2080 trials); Total number of trials 4290). h As for g but for the “Gaze” model (mean shown in c; City: 24.41 mean (1035 trials), Campus &
outside: −5.75 mean (1167 trials), Office & cafe: −9.00 (2068 trials); Total number of trials 4270). i. The number of accumulated salient perceptual
changes over time in the different network layers (lowest to highest: conv2, pool5, fc7, output) by scene type, for the “Gaze” model shown in h
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the qualitative aspects of human reports often associated with
time perception. However, the overall performance of the system
under these conditions still departed from that of human
participants (Fig. 3e, f) (see Supplementary Figs. 6 and 7 and
Supplementary Discussion: Changes in classification network
activation, not just stimulation, are critical to human-like time
estimation, for results of experiments conducted on pixel-wise
differences in the raw video alone. These data show that tracking
changes in classification network activation allows human-like
time estimation, while estimation based on tracking changes in
the stimulus properties alone does not).

Human-like gaze improves model performance. When the
video input to the system was constrained to approximate human
visual-spatial attention by taking into account gaze position
(“Gaze” model; Fig. 3c), model-produced estimates more closely
approximated reports made by human participants (Fig. 3c, e, f),
with substantially improved estimation as compared to estimates

based on the full frame input. This result was not simply due to
the spatial reduction of input caused by the gaze-contingent
spatial filtering, nor the movement of the input frame itself, as
when the gaze-contingent filtering was applied to videos other
than the one from which gaze was recorded (i.e. gaze recorded
while viewing one video then applied to a different video;
“Shuffled” model), model estimates were poorer (Fig. 3d). These
results indicate that the contents of where humans look in a scene
play a key role in time perception and indicate that our approach
is capturing key features of human time perception, as model
performance is improved when input is constrained to be more
human-like.

Model and human time estimation vary by content. As
described in the introduction, human estimates of duration are
known to vary by content (e.g. refs. 17,24–27). In our test videos,
three different types of scenes could be broadly identified: scenes
filmed moving around a city, moving around a leafy university
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Fig. 3 Human and model duration estimation and its modulation by scene type. a Human duration estimates by duration of presented video between 1 and
64 s (log-log scale). b–d as for a but for model versions Full frame, “Gaze” and “Shuffled”. The data in each plot a–d are based on the same set of 4251
video presentations, reported on by human participants a or estimated by different model versions b–d. Shaded areas in a–d show ±1 standard deviation of
the mean. Human reports in a show typical qualities of human temporal estimation with overestimation of short and underestimation of long durations.
bModel estimates when input the full video frame replicate similar qualitative properties, but estimation was poorer than humans. cModel estimates when
the input was constrained to approximate human visual-spatial attention, based on human gaze data, very closely approximated human reports made on
the same videos. When the gaze contingency was “Shuffled” such that the gaze direction was applied to a different video than that from which it was
obtained d, performance decreased. e Comparison of normalised mean error (NME) in estimations for models and human estimates (normalised by
physical duration, across the presented durations). f Comparison of the root mean squared error (RMSE) of model estimates compared to the human data.
The “Gaze” model is most closely matched (Full frame: 11.99, “Gaze”: 10.71, “Shuffled”: 11.79). g Mean deviation of duration estimates relative to mean
estimate by scene type for human participants (mean shown in a; City: 6.20 mean (1040 trials), Campus & outside: 2.01 mean (1170 trials), Office & cafe:
−4.23 (2080 trials); Total number of trials 4290). h As for g but for the “Gaze” model (mean shown in c; City: 24.41 mean (1035 trials), Campus &
outside: −5.75 mean (1167 trials), Office & cafe: −9.00 (2068 trials); Total number of trials 4270). i. The number of accumulated salient perceptual
changes over time in the different network layers (lowest to highest: conv2, pool5, fc7, output) by scene type, for the “Gaze” model shown in h
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the qualitative aspects of human reports often associated with
time perception. However, the overall performance of the system
under these conditions still departed from that of human
participants (Fig. 3e, f) (see Supplementary Figs. 6 and 7 and
Supplementary Discussion: Changes in classification network
activation, not just stimulation, are critical to human-like time
estimation, for results of experiments conducted on pixel-wise
differences in the raw video alone. These data show that tracking
changes in classification network activation allows human-like
time estimation, while estimation based on tracking changes in
the stimulus properties alone does not).

Human-like gaze improves model performance. When the
video input to the system was constrained to approximate human
visual-spatial attention by taking into account gaze position
(“Gaze” model; Fig. 3c), model-produced estimates more closely
approximated reports made by human participants (Fig. 3c, e, f),
with substantially improved estimation as compared to estimates

based on the full frame input. This result was not simply due to
the spatial reduction of input caused by the gaze-contingent
spatial filtering, nor the movement of the input frame itself, as
when the gaze-contingent filtering was applied to videos other
than the one from which gaze was recorded (i.e. gaze recorded
while viewing one video then applied to a different video;
“Shuffled” model), model estimates were poorer (Fig. 3d). These
results indicate that the contents of where humans look in a scene
play a key role in time perception and indicate that our approach
is capturing key features of human time perception, as model
performance is improved when input is constrained to be more
human-like.

Model and human time estimation vary by content. As
described in the introduction, human estimates of duration are
known to vary by content (e.g. refs. 17,24–27). In our test videos,
three different types of scenes could be broadly identified: scenes
filmed moving around a city, moving around a leafy university

E
st

im
at

io
n 

(s
)

Real duration (s)

1
1 1

10

10 10

64

64 64

1

10

10
64

64

1

10

64

1

10

10
64

64ba

dc

fe

i

N
M

E

hg
City

Real duration (s)

A
cc

um
ul

at
ed

 c
ha

ng
es

 b
y 

ne
tw

or
k 

la
ye

r

F
ul

l-f
ra

m
e 

*

* vs humans
10

11

12

Real duration (s)

×100
8
7
6
5
4
3
2
1
0

50

40

30

20

10

0

×100

10 conv2 pool5

fc7 output

8

6

4

2

0

250

200

150

100

50

0

M
ea

n 
de

vi
at

io
n 

(%
)

–10

0

10

20

30

M
ea

n 
de

vi
at

io
n 

by
 s

ce
ne

 (
%

)

–10

0

10

20

30

40

R
M

S
E

Human reports Full-frame model

“Gaze’’ model “Shuffled” model

1.5
1.0
0.5
0.0

1 10 64

G
az

e 
*

S
hu

ffl
ed

 *

0 020 2040 4060 60

0 20 400 20 40 60 60

Campus & outside

Office & cafe

Fig. 3 Human and model duration estimation and its modulation by scene type. a Human duration estimates by duration of presented video between 1 and
64 s (log-log scale). b–d as for a but for model versions Full frame, “Gaze” and “Shuffled”. The data in each plot a–d are based on the same set of 4251
video presentations, reported on by human participants a or estimated by different model versions b–d. Shaded areas in a–d show ±1 standard deviation of
the mean. Human reports in a show typical qualities of human temporal estimation with overestimation of short and underestimation of long durations.
bModel estimates when input the full video frame replicate similar qualitative properties, but estimation was poorer than humans. cModel estimates when
the input was constrained to approximate human visual-spatial attention, based on human gaze data, very closely approximated human reports made on
the same videos. When the gaze contingency was “Shuffled” such that the gaze direction was applied to a different video than that from which it was
obtained d, performance decreased. e Comparison of normalised mean error (NME) in estimations for models and human estimates (normalised by
physical duration, across the presented durations). f Comparison of the root mean squared error (RMSE) of model estimates compared to the human data.
The “Gaze” model is most closely matched (Full frame: 11.99, “Gaze”: 10.71, “Shuffled”: 11.79). g Mean deviation of duration estimates relative to mean
estimate by scene type for human participants (mean shown in a; City: 6.20 mean (1040 trials), Campus & outside: 2.01 mean (1170 trials), Office & cafe:
−4.23 (2080 trials); Total number of trials 4290). h As for g but for the “Gaze” model (mean shown in c; City: 24.41 mean (1035 trials), Campus &
outside: −5.75 mean (1167 trials), Office & cafe: −9.00 (2068 trials); Total number of trials 4270). i. The number of accumulated salient perceptual
changes over time in the different network layers (lowest to highest: conv2, pool5, fc7, output) by scene type, for the “Gaze” model shown in h
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computational model

the qualitative aspects of human reports often associated with
time perception. However, the overall performance of the system
under these conditions still departed from that of human
participants (Fig. 3e, f) (see Supplementary Figs. 6 and 7 and
Supplementary Discussion: Changes in classification network
activation, not just stimulation, are critical to human-like time
estimation, for results of experiments conducted on pixel-wise
differences in the raw video alone. These data show that tracking
changes in classification network activation allows human-like
time estimation, while estimation based on tracking changes in
the stimulus properties alone does not).

Human-like gaze improves model performance. When the
video input to the system was constrained to approximate human
visual-spatial attention by taking into account gaze position
(“Gaze” model; Fig. 3c), model-produced estimates more closely
approximated reports made by human participants (Fig. 3c, e, f),
with substantially improved estimation as compared to estimates

based on the full frame input. This result was not simply due to
the spatial reduction of input caused by the gaze-contingent
spatial filtering, nor the movement of the input frame itself, as
when the gaze-contingent filtering was applied to videos other
than the one from which gaze was recorded (i.e. gaze recorded
while viewing one video then applied to a different video;
“Shuffled” model), model estimates were poorer (Fig. 3d). These
results indicate that the contents of where humans look in a scene
play a key role in time perception and indicate that our approach
is capturing key features of human time perception, as model
performance is improved when input is constrained to be more
human-like.

Model and human time estimation vary by content. As
described in the introduction, human estimates of duration are
known to vary by content (e.g. refs. 17,24–27). In our test videos,
three different types of scenes could be broadly identified: scenes
filmed moving around a city, moving around a leafy university
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Fig. 3 Human and model duration estimation and its modulation by scene type. a Human duration estimates by duration of presented video between 1 and
64 s (log-log scale). b–d as for a but for model versions Full frame, “Gaze” and “Shuffled”. The data in each plot a–d are based on the same set of 4251
video presentations, reported on by human participants a or estimated by different model versions b–d. Shaded areas in a–d show ±1 standard deviation of
the mean. Human reports in a show typical qualities of human temporal estimation with overestimation of short and underestimation of long durations.
bModel estimates when input the full video frame replicate similar qualitative properties, but estimation was poorer than humans. cModel estimates when
the input was constrained to approximate human visual-spatial attention, based on human gaze data, very closely approximated human reports made on
the same videos. When the gaze contingency was “Shuffled” such that the gaze direction was applied to a different video than that from which it was
obtained d, performance decreased. e Comparison of normalised mean error (NME) in estimations for models and human estimates (normalised by
physical duration, across the presented durations). f Comparison of the root mean squared error (RMSE) of model estimates compared to the human data.
The “Gaze” model is most closely matched (Full frame: 11.99, “Gaze”: 10.71, “Shuffled”: 11.79). g Mean deviation of duration estimates relative to mean
estimate by scene type for human participants (mean shown in a; City: 6.20 mean (1040 trials), Campus & outside: 2.01 mean (1170 trials), Office & cafe:
−4.23 (2080 trials); Total number of trials 4290). h As for g but for the “Gaze” model (mean shown in c; City: 24.41 mean (1035 trials), Campus &
outside: −5.75 mean (1167 trials), Office & cafe: −9.00 (2068 trials); Total number of trials 4270). i. The number of accumulated salient perceptual
changes over time in the different network layers (lowest to highest: conv2, pool5, fc7, output) by scene type, for the “Gaze” model shown in h
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the qualitative aspects of human reports often associated with
time perception. However, the overall performance of the system
under these conditions still departed from that of human
participants (Fig. 3e, f) (see Supplementary Figs. 6 and 7 and
Supplementary Discussion: Changes in classification network
activation, not just stimulation, are critical to human-like time
estimation, for results of experiments conducted on pixel-wise
differences in the raw video alone. These data show that tracking
changes in classification network activation allows human-like
time estimation, while estimation based on tracking changes in
the stimulus properties alone does not).

Human-like gaze improves model performance. When the
video input to the system was constrained to approximate human
visual-spatial attention by taking into account gaze position
(“Gaze” model; Fig. 3c), model-produced estimates more closely
approximated reports made by human participants (Fig. 3c, e, f),
with substantially improved estimation as compared to estimates

based on the full frame input. This result was not simply due to
the spatial reduction of input caused by the gaze-contingent
spatial filtering, nor the movement of the input frame itself, as
when the gaze-contingent filtering was applied to videos other
than the one from which gaze was recorded (i.e. gaze recorded
while viewing one video then applied to a different video;
“Shuffled” model), model estimates were poorer (Fig. 3d). These
results indicate that the contents of where humans look in a scene
play a key role in time perception and indicate that our approach
is capturing key features of human time perception, as model
performance is improved when input is constrained to be more
human-like.

Model and human time estimation vary by content. As
described in the introduction, human estimates of duration are
known to vary by content (e.g. refs. 17,24–27). In our test videos,
three different types of scenes could be broadly identified: scenes
filmed moving around a city, moving around a leafy university
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Fig. 3 Human and model duration estimation and its modulation by scene type. a Human duration estimates by duration of presented video between 1 and
64 s (log-log scale). b–d as for a but for model versions Full frame, “Gaze” and “Shuffled”. The data in each plot a–d are based on the same set of 4251
video presentations, reported on by human participants a or estimated by different model versions b–d. Shaded areas in a–d show ±1 standard deviation of
the mean. Human reports in a show typical qualities of human temporal estimation with overestimation of short and underestimation of long durations.
bModel estimates when input the full video frame replicate similar qualitative properties, but estimation was poorer than humans. cModel estimates when
the input was constrained to approximate human visual-spatial attention, based on human gaze data, very closely approximated human reports made on
the same videos. When the gaze contingency was “Shuffled” such that the gaze direction was applied to a different video than that from which it was
obtained d, performance decreased. e Comparison of normalised mean error (NME) in estimations for models and human estimates (normalised by
physical duration, across the presented durations). f Comparison of the root mean squared error (RMSE) of model estimates compared to the human data.
The “Gaze” model is most closely matched (Full frame: 11.99, “Gaze”: 10.71, “Shuffled”: 11.79). g Mean deviation of duration estimates relative to mean
estimate by scene type for human participants (mean shown in a; City: 6.20 mean (1040 trials), Campus & outside: 2.01 mean (1170 trials), Office & cafe:
−4.23 (2080 trials); Total number of trials 4290). h As for g but for the “Gaze” model (mean shown in c; City: 24.41 mean (1035 trials), Campus &
outside: −5.75 mean (1167 trials), Office & cafe: −9.00 (2068 trials); Total number of trials 4270). i. The number of accumulated salient perceptual
changes over time in the different network layers (lowest to highest: conv2, pool5, fc7, output) by scene type, for the “Gaze” model shown in h
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the qualitative aspects of human reports often associated with
time perception. However, the overall performance of the system
under these conditions still departed from that of human
participants (Fig. 3e, f) (see Supplementary Figs. 6 and 7 and
Supplementary Discussion: Changes in classification network
activation, not just stimulation, are critical to human-like time
estimation, for results of experiments conducted on pixel-wise
differences in the raw video alone. These data show that tracking
changes in classification network activation allows human-like
time estimation, while estimation based on tracking changes in
the stimulus properties alone does not).

Human-like gaze improves model performance. When the
video input to the system was constrained to approximate human
visual-spatial attention by taking into account gaze position
(“Gaze” model; Fig. 3c), model-produced estimates more closely
approximated reports made by human participants (Fig. 3c, e, f),
with substantially improved estimation as compared to estimates

based on the full frame input. This result was not simply due to
the spatial reduction of input caused by the gaze-contingent
spatial filtering, nor the movement of the input frame itself, as
when the gaze-contingent filtering was applied to videos other
than the one from which gaze was recorded (i.e. gaze recorded
while viewing one video then applied to a different video;
“Shuffled” model), model estimates were poorer (Fig. 3d). These
results indicate that the contents of where humans look in a scene
play a key role in time perception and indicate that our approach
is capturing key features of human time perception, as model
performance is improved when input is constrained to be more
human-like.

Model and human time estimation vary by content. As
described in the introduction, human estimates of duration are
known to vary by content (e.g. refs. 17,24–27). In our test videos,
three different types of scenes could be broadly identified: scenes
filmed moving around a city, moving around a leafy university
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Fig. 3 Human and model duration estimation and its modulation by scene type. a Human duration estimates by duration of presented video between 1 and
64 s (log-log scale). b–d as for a but for model versions Full frame, “Gaze” and “Shuffled”. The data in each plot a–d are based on the same set of 4251
video presentations, reported on by human participants a or estimated by different model versions b–d. Shaded areas in a–d show ±1 standard deviation of
the mean. Human reports in a show typical qualities of human temporal estimation with overestimation of short and underestimation of long durations.
bModel estimates when input the full video frame replicate similar qualitative properties, but estimation was poorer than humans. cModel estimates when
the input was constrained to approximate human visual-spatial attention, based on human gaze data, very closely approximated human reports made on
the same videos. When the gaze contingency was “Shuffled” such that the gaze direction was applied to a different video than that from which it was
obtained d, performance decreased. e Comparison of normalised mean error (NME) in estimations for models and human estimates (normalised by
physical duration, across the presented durations). f Comparison of the root mean squared error (RMSE) of model estimates compared to the human data.
The “Gaze” model is most closely matched (Full frame: 11.99, “Gaze”: 10.71, “Shuffled”: 11.79). g Mean deviation of duration estimates relative to mean
estimate by scene type for human participants (mean shown in a; City: 6.20 mean (1040 trials), Campus & outside: 2.01 mean (1170 trials), Office & cafe:
−4.23 (2080 trials); Total number of trials 4290). h As for g but for the “Gaze” model (mean shown in c; City: 24.41 mean (1035 trials), Campus &
outside: −5.75 mean (1167 trials), Office & cafe: −9.00 (2068 trials); Total number of trials 4270). i. The number of accumulated salient perceptual
changes over time in the different network layers (lowest to highest: conv2, pool5, fc7, output) by scene type, for the “Gaze” model shown in h

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-08194-7

4 NATURE COMMUNICATIONS | ����� ����(2019)�10:267� | https://doi.org/10.1038/s41467-018-08194-7 | www.nature.com/naturecommunications

objective

su
bj

ec
tiv

e

the qualitative aspects of human reports often associated with
time perception. However, the overall performance of the system
under these conditions still departed from that of human
participants (Fig. 3e, f) (see Supplementary Figs. 6 and 7 and
Supplementary Discussion: Changes in classification network
activation, not just stimulation, are critical to human-like time
estimation, for results of experiments conducted on pixel-wise
differences in the raw video alone. These data show that tracking
changes in classification network activation allows human-like
time estimation, while estimation based on tracking changes in
the stimulus properties alone does not).

Human-like gaze improves model performance. When the
video input to the system was constrained to approximate human
visual-spatial attention by taking into account gaze position
(“Gaze” model; Fig. 3c), model-produced estimates more closely
approximated reports made by human participants (Fig. 3c, e, f),
with substantially improved estimation as compared to estimates

based on the full frame input. This result was not simply due to
the spatial reduction of input caused by the gaze-contingent
spatial filtering, nor the movement of the input frame itself, as
when the gaze-contingent filtering was applied to videos other
than the one from which gaze was recorded (i.e. gaze recorded
while viewing one video then applied to a different video;
“Shuffled” model), model estimates were poorer (Fig. 3d). These
results indicate that the contents of where humans look in a scene
play a key role in time perception and indicate that our approach
is capturing key features of human time perception, as model
performance is improved when input is constrained to be more
human-like.

Model and human time estimation vary by content. As
described in the introduction, human estimates of duration are
known to vary by content (e.g. refs. 17,24–27). In our test videos,
three different types of scenes could be broadly identified: scenes
filmed moving around a city, moving around a leafy university
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Fig. 3 Human and model duration estimation and its modulation by scene type. a Human duration estimates by duration of presented video between 1 and
64 s (log-log scale). b–d as for a but for model versions Full frame, “Gaze” and “Shuffled”. The data in each plot a–d are based on the same set of 4251
video presentations, reported on by human participants a or estimated by different model versions b–d. Shaded areas in a–d show ±1 standard deviation of
the mean. Human reports in a show typical qualities of human temporal estimation with overestimation of short and underestimation of long durations.
bModel estimates when input the full video frame replicate similar qualitative properties, but estimation was poorer than humans. cModel estimates when
the input was constrained to approximate human visual-spatial attention, based on human gaze data, very closely approximated human reports made on
the same videos. When the gaze contingency was “Shuffled” such that the gaze direction was applied to a different video than that from which it was
obtained d, performance decreased. e Comparison of normalised mean error (NME) in estimations for models and human estimates (normalised by
physical duration, across the presented durations). f Comparison of the root mean squared error (RMSE) of model estimates compared to the human data.
The “Gaze” model is most closely matched (Full frame: 11.99, “Gaze”: 10.71, “Shuffled”: 11.79). g Mean deviation of duration estimates relative to mean
estimate by scene type for human participants (mean shown in a; City: 6.20 mean (1040 trials), Campus & outside: 2.01 mean (1170 trials), Office & cafe:
−4.23 (2080 trials); Total number of trials 4290). h As for g but for the “Gaze” model (mean shown in c; City: 24.41 mean (1035 trials), Campus &
outside: −5.75 mean (1167 trials), Office & cafe: −9.00 (2068 trials); Total number of trials 4270). i. The number of accumulated salient perceptual
changes over time in the different network layers (lowest to highest: conv2, pool5, fc7, output) by scene type, for the “Gaze” model shown in h
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study two 



Maxine Sherman

Sherman, M., Fountas, Z., Seth, A.K., & Roseboom, W. (submitted)



imaging experiment

• videos of (objective duration) 8-24 sec

• city scenes and office scenes

• 40 participants

• record estimated duration and calculate scene-wise bias

Sherman et al (submitted)



neuroimaging study
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behavioural results

Sherman et al (submitted)
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computed trial-by-trial (ߩҧ ൌ ͲǤ͹ͻ� േ ͲǤͳͲ), and when averaged within duration categories (ߩҧ ൌ101 

ͲǤͻ͸ǡ Fig. 1B). As predicted, durations of city scenes were relatively over-estimated and  102 

office scenes under-estimated, Mdiff = 5.18 േ 1.36 (normalized bias, %), 95% CI [1.81, 8.65], 103 

t39 = 3.09, p = 0.004, d = 0.50, BFH(0,10.5) = 33.8, confirming that natural scenes containing a 104 

higher density of salient events do indeed feel longer (Fig. 1C. Our pre-registered prior for 105 

the Bayes factor came from the difference of 10.5 found in (6), see Fig. 3g there). Note that 106 

this result shows that the amount of experienced time was lower for office videos, not 107 

necessarily that time passed faster for office videos.  108 

 109 

Estimates generated by an artificial network model are biased by scene type 110 

It has previously been shown that estimates of duration based on changes in activation 111 

across the hierarchy of an artificial image classification network can replicate human-like 112 

biases in duration reports for naturalistic stimuli (7,9). Following from this work, we tested 113 

 

Figure 1. Trial sequence and human behavioral results. (A) Participants viewed naturalistic videos 

(8-24 seconds in duration, 1 video per trial) of walking around a busy city or sitting in a quiet office 

while in the MRI scanner and reported the duration using a visual analogue scale. (B) Participant-

wise relationship between report and duration (colored lines), mean relationship (solid black line), 

and the line of unity (dashed line). (C) Relative under-/over-estimation of duration by human 

participants for office/city videos. Error bars represent +/- within-subject SEM. 

A. Naturalistic videos and ratings 
scale, presented while subjects were 
scanned using fMRI.  
B. Participant-wise relationship 
between real and estimated duration, 
w/ mean and (dashed) line-of-unity.  
C. Relative over/under-estimation for 
office vs city scenes (+/- SEM)
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 140 

Figure 2. Artificial network model results. The same naturalistic videos (8-24 seconds in duration) that 141 

human participants viewed were input to an image classification network-based model to generate 142 

estimates of duration. (A) Relationship between presented and model-predicted video durations for 143 

this model, trained on accumulated salient events in video frames (solid line). The dashed line is the 144 

line of unity. (B) Relative under-/over- estimation of duration for office/city scenes for this model. Error 145 

bars represent SEM. 146 

 147 

As was the case with human behavior, and as expected, the artificial classification network-148 

based model produced duration reports that were significantly correlated with the video 149 

duration ߩሺʹ͵ʹͻሻ = 0.73, p < 0.001 (Fig. 2A). Like our human participants, the model 150 

underestimated longer durations. As explained in Roseboom et al (9)��WKLV�µUHJUHVVLRQ�WR�WKH�151 

PHDQ¶�HIIHFW�LV�OLNHO\�D�SURGXFW�RI�PDSSLQJ�³VHQVDWLRQ´��KHUH��WKH�DFFXPXODWHG�VDOLHQW�152 

events) onto a scale for report (here, seconds). 153 

 154 

More importantly, the model reproduced the pattern of subjective biases seen in human 155 

participants, despite being trained on presented video duration (Fig. 2B). Specifically, model-156 

produced estimates differed as a function of video type: estimation bias was greater (i.e. 157 

reports relatively over-estimated) for busy city scenes than for office scenes, Moffice = -5.00 േ 158 

0.66, Mcity = 4.99 േ 0.55, 95%CI = [8.31, 11.67], t2329 = 11.65, p < 0.001, d = 0.48 (Fig 2B). 159 

These results demonstrate that simply tracking the dynamics of a network trained for 160 

perceptual classification while it is exposed to natural scenes can produce human-like 161 

estimates of duration.  162 

A. Relationship between real and 
model-estimate duration (with line-of-
unity). 
C. Relative over/under-estimation for 
office vs city scenes, for model



model-based fMRI

Sherman et al (submitted)
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 163 

Figure 3. Perceptual hierarchies used for fMRI-based model analysis. Three different three-layer 164 

perceptual hierarchies were defined: a visual hierarchy, an auditory hierarchy and a somatosensory 165 

hierarchy. The visual hierarchy constitutes our model of interest, while the auditory and 166 

somatosensory hierarchies constitute control models. The regions chosen for layers 1, 2 and 3 are 167 

colored in red, yellow and green respectively. Precise details of the regions are specified in Table S1. 168 

 169 

Reconstructing human-like duration reports from visual cortex BOLD 170 

Here we put our proposal to the key test. Our proposal is that tracking changes in perceptual 171 

processing in the modality-specific human sensory hierarchy is sufficient to predict human 172 

trial-by-trial biases in subjective duration. Perceptual processing of visual scenes is achieved 173 

primarily in visual cortex, so to test our proposal we asked whether we could reproduce 174 

SDUWLFLSDQWV¶�HVWLPDWLRQ�ELDVHV�IURP�VDOLHQW�events in visual cortex BOLD. In other words, 175 

instead of accumulating salient events in visual stimulation, we accumulated salient events 176 

in BOLD responses to that stimulation.  177 

 178 

Coarse-level regional differences in BOLD were seen for both office versus city videos, and 179 

for videos (from either category) for which reports that were strongly biased (GLM results, 180 

see Fig. S1 and Table S4). However, these results do not tell us about the relationship 181 

between duration biases and salient events in BOLD dynamics. If we can predict trial-by-trial 182 

subjective duraWLRQ�RQO\�IURP�SDUWLFLSDQWV¶�%2/'�UHVSRQVHV�LQ�YLVXDO� 183 
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cortex (and not in other control regions), then we will have shown that human subjective 184 

duration judgements (when viewing natural visual scenes) can be constructed from brain 185 

activity associated with perceptual processing. 186 

 187 

To do this, we defined a three-layer visual hierarchy a priori predicted to be involved in 188 

processing of the silent videos (see Fig. 3 and supplementary methods). We selected 189 

regions such that lower layers reflect the processing of low-level features (e.g. edge 190 

 

Figure 4. Schematic of modelling analysis pipeline. (1) Following data collection, (2a) voxel-wise 

BOLD amplitude was extracted and (2b) TR-by-TR (i.e. time point-by-time point, TR =  repetition 

time) changes (Euclidean distance or signed difference) computed. The example given here is for 

the visual hierarchy, where each shaded matrix Xk  illustratively represents voxel-wise BOLD 

amplitudes (shaded squares) at each slice. The same process was conducted for the auditory and 

somatosensory hierarchies (see Fig. 3 and Table S1 for different hierarchies). (3) Total change in 

the layer/ROI at each TR was compared to a dynamic attention threshold (red line) that categorized 

events as salient (red dots) or not (grey dots). The black line represents 0. An event was classified 

as salient if it took an equal or higher value than the threshold. (4) Accumulated salient events were 

regressed onto seconds, (5a) predictions from the model were converted into normalised bias (5b) 

and compared across condition and with human behavior. 

 



intuitions about time
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Fig. 5, accumulated salient events (defined according to Eq. 3) in visual cortex already 245 

distinguish between video type prior to transformation into seconds. 246 

)LQDOO\��ELDVHV�LQ�PRGHO�SUHGLFWLRQV�ZHUH�FRPSDUHG�WR�SDUWLFLSDQWV¶�duration estimation 247 

biases. For our pre-UHJLVWHUHG�DQDO\VLV��ZH�SRROHG�KXPDQ�SDUWLFLSDQWV¶�behavioural data 248 

 

 

Figure 5. Accumulated salient events over video types, perceptual hierarchies (rows) and layers 

(columns). The three leftmost columns plot the mean (+/-SEM) number of accumulated salient 

events in each layer of each perceptual hierarchy as a function of city (blue lines) or office (yellow 

lines) scene. Only salient events in visual cortex distinguish between office and city scenes, and 

this holds for all three layers. The three rightmost columns (green lines) plot the difference lines, 

with shaded bounds depicting 95% CIs. These show that only accumulated salient events in visual 

cortex distinguish between scenes, because only these lines are above the zero line. This means 

that accumulated salient events, even prior to regression into standard units (seconds), distinguish 

between scene type in visual cortex, but not in auditory cortex or in somatosensory cortex. 

 

 

model-based fMRI

Sherman et al (submitted)



model-based fMRI
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model bias as a function of 25 quantiles of human normalized bias. The association held 331 

under a wide range of reasonable attention threshold parameters (Fig. 7B), meaning that 332 

model performance in reproducing participant duration reports was robust to how salient 333 

events were categorized. Again, the visual model out-performed control models in predicting 334 

normalized bias (Fig. S5). While the model trained on accumulated visual cortex salient 335 

events reproduced patterns in human biases, biases from exploratory models trained on 336 

auditory and somatosensory salient events did not: they neither discriminated video type 337 

(auditory: Mdiff = 0.36 േ0.19, F2(1) = 0.43, p = 0.514, BFH(0,0.02) = 0.16, RR = [0.02, �@��338 

somatosensory: Mdiff= 0.02 േ0.21, F2(1) = 0.46, p = 0.499, BFH(0,0.02) = 0.06, RR = [0.01, �@ 339 

see Fig 6E,F), nor predicted trial-ZLVH�KXPDQ�QRUPDOL]HG�ELDV��DXGLWRU\��ȕ� �-0.003 േ�0.006,  340 

 

Figure 6. Computational neuroimaging analysis. (A-C) Trial-by-trial association between presented 

video duration and model-predicted duration reports obtained from the visual, auditory and 

somatosensory models. Different dot colors represent different participants, and each dot is data 

from one trial. (D-F) Mean model-estimated normalized bias as a function of video type for the 

visual, auditory and somatosensory models. Error bars represent +/- within-subject SEM.  

 



study three 



Zafeirios Fountas

Fountas, Z., Sylaidi, A., Nikforou, K., Seth, A.K., Shanahan, M., & Roseboom, W. (in press) Neural Computation



time and memory

• computational model integrating hierarchical predictive 
coding, short-term plasticity, spatio-temporal attention, and 
episodic memory formation and recall


• behavioural (online) experiment with ~13,000 participants

• test whether model can replicate influences of  

(i) cognitive load 
(ii) scene type 
(iii) prospective vs retrospective judgement

Fountas et al (in press) Neural Computation



prospective vs retrospective time

Block et al (2010) Acta Psychologica

High cognitive load decreases 
apparent duration for prospective 
estimates …


…. but increases apparent duration 
for retrospective estimates

task of monitoring time (Zakay and Block, 1994; Block and Zakay, 1997; Block et al., 2010).

Specifically, increasing cognitive load (by requiring concurrent attention to additional tasks

beyond tracking time) has been reported to decrease the apparent duration of an interval

when a person is aware that attention to time is required for a given task (prospective

time), while apparent duration is increased by cognitive load when reflecting on the

duration of an interval after it has occurred (retrospective time; comprehensively reviewed

in Block et al. (2010) see Figure 1). Differences in time perception based on this interaction

between cognitive load and prospective versus retrospective duration judgements have led

to suggestions that different mechanisms underlie the different scenarios: when actively

attending to time (prospective time) the process is largely “attention” driven; when

reflecting on a period of time after it has occurred (retrospective time) the process is

largely driven by “memory” Zakay and Block (1994, 1997); Block et al. (2010); Brown

(2010). Reflecting these different approaches, models of time perception and memory have

developed largely independently since diverging several decades ago (approach in Matell

and Meck (2004) versus Howard et al. (2014), for example), precluding a unified account

of time perception.
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Fig 1. Relationship between prospective and retrospective duration judgments and their
interaction with cognitive load (adapted from Block et al. (2010)). Duration judgement
ratio is reported duration divided by physical duration. Error bars indicate standard
error of the mean. Increasing cognitive load decreases reported duration in a prospective
timing task, but increases reported duration in a retrospective timing task.

Here we present a model of human perceptual processing, memory, and time perception.

3



behavioural study

Fountas et al (in press) Neural Computation

• ~13,000 participants, each 
performing one trial


• prospective vs retrospective


• high vs low cognitive load


• quiet vs busy scenes


• estimate duration



behavioural study

Fountas et al (in press) Neural Computation
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Fig 5. Human duration estimates according to task (pro/retrospective), cognitive load
(low/high), and presented video scene (City, Campus and outside, or Office and cafe).
Ai-iv Human duration estimation for task-cognitive load combination. The black curves
represent the mean, the red is the median, and the gray is the standard deviation across
all trials. B The mean duration judgement ratio (report versus physical duration) across
all trials for each task-cognitive load combination. Broken lines/open markers indicate
results from retrospective judgements, solid lines/filled markers indicate results from
prospective judgements (compare with Figure 1). C as for B, but separated by scene
type (City, Campus & outside, Office & cafe). The gray numbers denote the number of
participants in each case, black (red) markers are means (medians).

for the previously reported result, this interaction does not reach statistical significance

if participants who were explicitly counting are excluded (2x2 ANOVA (F (1, 6973) =

3.44, p = .06) and is shifted towards overestimation rather than underestimation. This shift

towards overestimation was likely due to our experiment using more dynamic stimuli which

are known to result in longer duration estimates Linares and Gorea (2015); Roseboom

et al. (2019); Suárez-Pinilla et al. (2019) (see also Figure 5C). The reason we obtain a

numerically smaller task by load interaction in our data (when excluding participants

who were counting) becomes clear when considering the results broken down by the

different scene types that were used as stimuli (City, campus and outside, and office/cafe)

(Figure 5C) - the different scene types produce qualitatively different outcomes in duration

estimation. First, regardless of task and load, the degree of duration overestimation
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computational model: memory formation

Fountas et al (in press) Neural Computation

• use salient changes to trigger 
(hierarchical) episodic memory 
formation


• replace Euclidean distance 
with Bayesian prediction error



computational model: recall

Fountas et al (in press) Neural Computation

(2019), as it provides a working explanation of the complex interplay between prior beliefs,

sensory-based information and learning.

In this study, we define a predictive processing model that relies on feed-forward

deep neural networks for the bottom-up flow of information (see inference model in

Figure 2) and a novel stochastic process to account for the top-down flow of predictions

(see generative model in the same figure). Unlike famous approaches that use neural

networks to implement inference via amortization Kingma and Welling (2014); Rezende

et al. (2014), here neural activations of each hierarchical layer n represent single samples

of the random variable xn
t , rather than its distribution parameters. Hence, existing,

pre-trained, feed-forward neural networks can be used to propagate bottom-up sensory

signals or, in this case, to approximate the inference P (xn
t |xn�1

t ).
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structure

Fig 2. Simplified probabilistic graphical representation of the proposed predictive
processing model described in the text, highlighting the distinction between episodic and
semantic memory systems. The random variables xn

t , z
n
t correspond to different

hierarchical representations of the input, continuous and categorical respectively. All
solid-line arrows represent conditional dependencies while, in particular, orange arrows
highlight dependencies between variables with distributions that evolve over different
time scales. For a full graphical representation of the model equations see S1 Figure.

The structure of the generative model (solid arrows in Figure 2 and S1 Figure) can

be best described using the three major perceptual principles that it was designed to

account for. First, humans are able to segregate raw sensory information into different

categories of concepts based on similarity (often called taxonomic relations) and access

these categories linguistically, answering for instance questions such as what does an object

7

is summarized in Algorithm 1.
Algorithm 1: Tree construction during episodic memory recall

1 Create a tree Tr(eN0 ) with root node eN0 (the red node in Figure 4).

2 Append to Tr(eN0 ) all nodes en connected to eN0 , where n < N , with probability

⇠ Bern
�
1� Pevidence(en)

�
.

3 For each eni 2 Tr(eN0 ) with component znk,t = eni , estimate the most likely number

of children using the distribution of children recorded so far during this

component as a prior Pchil.(znk,t).

4 If the estimated number is greater than the current number of children, append

more nodes en�1
j to Tr(eN0 ), sampled from

P (en�1
j |en�1

j�1 , e
n
i ) ⇡ P (zn�1

t |zn�1
t�1 == en�1

j�1 , z
n
t == eni , e

n
i ) (solid green nodes).

5 While 9 eni 2 Tr(eN0 ) with n > 1 to which step 5 has not been applied yet, append

k blank nodes en�1
j to Tr(eN0 ), where k is either sampled from Pchil.(znk,t) if eni is

known, or from Pchil.(n) otherwise. (nodes with green dashed outline).

Probabilities of recall
of connected nodes

Nodes recalled from
episodic memory semantic memory

Nodes fulfilled from

start 1

0.9 0.7 0.8

0.60.80.7

0.8 0.9

0.9

0.8 0.8

0.6 0.7 8 nodes

7 nodes

6 nodes

4 nodes

1 node

regression
time in
seconds

Full episodic memory
(current episode in black)

Fig 4. Algorithm of the steps required for episodic memory recall and retrospective
duration judgements. Solid circles represent nodes with an assigned value to the
categorical variable znt either from the episodic (black) or the semantic memory (green).
Circles with the dashed outline represent nodes whose component has not been
determined during recall.

The tree Tr(eN0 ) represents the salient events that occurred during eN0 and have been

currently retrieved from memory. Counting the overall nodes per layer provides an

approximation of the amount of belief update in each layer during this episode, and,

therefore, also an estimation of the corresponding sense of the episode’s duration. To

maintain consistency in notation, let ⌧̃ntree be the number of nodes in each layer n of the

tree. Whereas the nodes added in steps 1-2 of Algorithm 1 are the only ones taken from

episodic memory, alone they do not provide enough information, as they can only be fewer
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Fig 6. Model duration estimates in seconds or accumulated salient events by task
(pro/retrospective) and cognitive load (high/low) for the same trials performed by human
participants. Ai-iv Model duration estimates for task-cognitive load combination using a
single linear regression trained only on prospective event accumulations. The black curves
represent the mean, the red is the median, and the gray is the standard deviation across
all trials. Estimates in seconds were obtained from a single linear model trained on
objective video durations and the number of episodic nodes recorded for each trial. B
The mean duration judgement ratio (estimate versus physical duration) over all trials for
each task-cognitive load interaction, using the same linear model. Broken lines/open
markers indicate results from retrospective judgements, solid lines/filled markers indicate
results from prospective judgements. C The rate of accumulated salient events over time
(per second) in the different network layers, across all scene types and separated by task
and cognitive load. Note that the human data replicated from Figure 5C is in seconds
and therefore is not meaningfully positioned on the y-axis - it is depicted for the purpose
of comparing the task/load interaction in different scenes.

specific scenes. In the case of humans (Figure 5C) we see the clear cross-over task/load

interaction for duration reports made about the dynamic city, while the interaction in

reports made about other scenes is different. In Figure 6C we place those interaction

patterns from the human results (in blue) next to the layers of the model that are

qualitatively best matched. In S8 Figure we compare the cognitive load interaction

between retrospective accumulated events/sec and retrospective human reports to further

substantiate this match. These results suggest that duration estimation may be based on

the activity in specific layers of the network for specific contexts; i.e., that humans may

rely more on information captured in specific hierarchical levels of representation of an

episode, given the context of this episode. For instance, stimulus representations similar to

the first convolutional layer (conv1 ) of our network could be preferred for highly dynamic
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summary

• study 1: accumulated salient perceptual change provides a 
sufficient basis for human duration estimation


• study 2: this applies to the brain too, in a modality specific 
way


• study 3: extension of model to include episodic memory 
formation, to account for prospective vs retrospective 
judgements

Roseboom et al (2019) Nature Communications

Sherman et al (2022) BioRXiv

Fountas et al (in press) Neural Computation



dreamachine & 
perception census





Brion Gysin

From Flicker (1997), dir. Nic Sheehan

“You	are	the	artist	…	what	the	
Dreamachine	incites	you	to	see	
is	yours.”



stroboscopically-induced hallucinations

• Lucia No.3 strobe light

• see most effects between 8-20 Hz

• EEG data shows substantial entrainment

• EEG data shows potential increases in complexity/entropy

Schwartzman et al (2019) BioArXiv









1. Colour perception – hi & ni 2. Imagery – vi, hi, ni 3. Classic Psychophysics – hi, ni

Ishihara test – report what number is presented

Favourite colour – pick preferred colour

Imagery snapshot – self-report of imagery vividness Visual size illusions – adjust size of the orange objects 

Vernier acuity – report misalignment of the top line

4. Anomalous perception 5. Time perception 6. Information sampling – hi, ni

vi hi & ni vi hi & ni
Event segmentation taskWhite Christmas task –

report if you can hear WC
VEARs – report experience 
of sound

Sound duration estimation Video duration estimation

7. Phenomenological control – vi, ni 8. Synaesthesia – mostly for ni, some for vi & 
hi

9. Beliefs about consciousness 

Suggestibility primer Synaesthesia quiz – explain synaesthesia is and 
outline different forms and ask people which, if any, 
they have. 

2 items from the beliefs about consciousness 
survey

CORE tasks 
vi = visual impairments
hi = hearing impairments
ni = no impairments  

How vivid is your mental imagery?
1-10 scale: no mind’s eye to as vivid as real perception

How vivid is your auditory imagery?
1-10 scale: no mind’s ear to as vivid as real perception

Participants will be asked to use their imagination 
to create a certain experience. After that, 
participants will rate the report on their 
experience. 

Do letters have 
personalities? 

Do letters have 
colours?

perception census

Baykova et al (in progress)



summary

• study 1: accumulated salient perceptual change provides a 
sufficient basis for human duration estimation


• study 2: this applies to the brain too, in a modality specific 
way


• study 3: extension of model to include episodic memory 
formation, to account for prospective vs retrospective 
judgements


• dreamachine: a large-scale art-science project, and survey of 
perceptual diversity

Roseboom et al (2019) Nature Communications

Sherman et al (2022) BioRXiv

Fountas et al (in press) Neural ComputationBaykova et al (in progress)



“An exhilarating book:  A vast-
ranging phenomenal achievement 
that will undoubtedly become a 
seminal text” 

Gaia Vince, Guardian (Book of the Week)

“A brilliant beast of a book”
David Byrne

The Sunday Times Top 10 Bestseller

A Financial Times Book of the Year

www.anilseth.com

@anilkseth

A Guardian Science Book of the Year
An Economist Book of the Year
A New Statesman Book of the Year

A Bloomberg Book of the Year
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